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a b s t r a c t 

With the rapid development of big data and data center networks, NoSQL database has 

won great popularity for its excellent performance in accelerating the performance of 

many online and offline big data applications, such as HBase, Cassandra and MongoDB. 

However, due to massive and frequent Create/Update/Retrieval/Delete (CURD) operations, 

the traditional TCP/IP protocol stack has difficulty to provide the required request rates and 

response latency for the large-scale NoSQL system. For example, large-scale data migration 

or synchronization among multiple clusters in a data center results in competition for net- 

work bandwidth with high delay. To mitigate such transmission bottleneck, we propose an 

approach of RDMA-driven document NoSQL Paradigm’ RDMA_Mongo, based on MongoDB. 

The performance of CURD operations is enhanced by one-sided Remote Direct Memory 

Access (RDMA) primitives (such as RDMA Read/Write) without involving the TCP/IP stack 

or CPU. Evaluation under RDMA-enabled network demonstrates that RDMA_Mongo signif- 

icantly improves the CURD performance, compared with plain MongoDB. The results show 

that the average insert throughput increases by approximately 30%, the average delete 

throughput by over 30%, the update by up to 17% and the query throughput by 15% when 

facing large-scale data requests. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

With the rapid increase of large-scale data, which needs to be collected and analyzed online or offline in a data center,

the distributed NoSQL (Not Only Structured Query Language) database systems such as MongoDB have been widely adopted

in both academia and industry. NoSQL databases are designed not only to cope with the challenges in scalability and agility,

which modern applications are confronted with, but also to take advantages of the commodity storage and computing power

available today. As a typical implementation of NoSQL databases, MongoDB employs flexible document data model, auto-

sharding, replica sets as core features, and is the only NoSQL database to support multi-document transactions currently.

CURD document operations, replica sets and auto-sharding in MongoDB all rely on the underlying network communication.
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Fig. 1. The difference between TCP and RDMA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, networking for big data [50] is extremely vital to accommodate the demand for big data processing. In the

case of high concurrency of big data processing, it is found in our evaluation that the transmission load using traditional

network protocol stack has become a bottleneck of MongoDB. 

Meanwhile, as an emerging underlying network technology in recent years, RDMA (Remote Direct Memory Ac-

cess), especially RoCE (RDMA over Converged Ethernet), has been frequently adopted in many industrial datacenters

[10,14,16,25,38,41,43] . It offers ideal high throughput, low latency and CPU-bypassing for big data applications like HDFS

[13,36] , memory file system [22] , analysis and modeling on big data [5,33] . RDMA network protocol uses zero-copy technol-

ogy and bypass OS kernel to directly access registered memory in remote host. 

Fig. 1 shows the difference between TCP and RDMA. In terms of TCP, the data in application buffer is encapsulated by

the sockets API in user space. Then the encapsulated data is written to network card through the sockets and TCP/IP layer

protocols of OS kernel. However, in terms of RDMA, the data in application buffer is encapsulated by IB Verbs API in user

space, and the encapsulated data is then directly written to the RDMA network card (RNIC) without any involvement of the

operating system kernel. 

The mainstream RDMA technologies include InfiniBand, RoCE and iWARP. RDMA primitives can be divided into message-

oriented two-sided verbs (such as RDMA SEND/RECV) and memory-sharing one-sided verbs (such as RDMA READ/WRITE)

[26,27] . The message-passing communication requires that the receiver should start the transmission session and register a

communication buffer. After that, the sender prepares to modify the data in the remote receiver’s memory buffer and accom-

plishes the data exchanges. However, the problem is, that in such a message-oriented mode, data copy between data mem-

ory buffer and communication memory buffer is still unavoidable. The RDMA shared-memory mode merges the data mem-

ory buffer and communication memory buffer by allowing sender and receiver sides to remain completely passive. Existing

RDMA driven data center applications, called RDMA-Enhanced Paradigm, fall into two categories: RDMA-Enhanced System

[4,13–20,22,28,29,36,38,39,43,44,46,47,49] and RDMA-Enhanced Algorithm [2,6,35,42] . For instance, Nessie [4] proposed a

fully client-driven key-value store system using RDMA for high performance. APUS [42] proposed the first RDMA-based

Paxos consensus algorithm. Existing RDMA-driven systems mainly focus on distributed file system [13,20,22,36] , key-value

store [4,14–16,28,38,43,44,49] , parallel database [19] , relational database [18,29] , as well as memory transaction [17,46,47] .

However, to the best of our knowledge, there have been no attempts to enhance document-based NoSQL databases in

RDMA-enabled networks. Therefore, can we accelerate document-based NoSQL system with RDMA to mitigate the trans-

mission bottleneck? 

This paper presents RDMA_Mongo, which is the first RDMA driven document-based NoSQL paradigm. We first demon-

strate a detailed analysis of MongoDB network transport designs. Through analyzing the key stages in the NoSQL CURD

operations with high concurrency, we find that there are two key challenges: (1) to decrease frequent CPU context switch-

ing caused by data transmission in traditional network and (2) to reduce waiting time on the MongoDB client side. 

To address the aforementioned challenges, specifically, RD-MA_Mongo automatically detects whether RDMA NICs and

related libraries (such as libibverbs, librdmacm) are supported at both local and remote hosts, and then determines whether

to use RDMA verbs or traditional network sockets. Second, based on the current system load (especially memory usage),

RDMA_Mongo determines the appropriate buffer size on demand and registers RDMA communication memory regions. 

Third, RDMA_Mongo introduces non-blocking data transmission with the power of RDMA Completion Queue (CQ). With-

out modification on the MongoDB existing network transport interface, RDMA_Mongo rewrites the socket implementation
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exploiting RDMA one-sided shared-memory primitives, which can coexist with traditional network transport mode. Finally,

indigenous MongoDB exploits the replica set mechanism to achieve high availability, that is, the MongoDB cluster has one

primary node and multiple secondary nodes at the same time. The secondary nodes need to continuously pull oplogs (Op-

eration Log) from the primary node and replay the idempotent oplogs for database synchronization. To accelerate such

process, we optimize and redesign the oplogs synchronization protocol based on RDMA primitives. 

The main contributions of our work can be summarized as follows. 

• We analyze thoroughly all the various design choices of RDMA-driven paradigm and demonstrate an effective trade-off

among different design options for high performance RDMA_Mongo. 
• We put forward a RDMA context detection algorithm for determining TCP/IP-based or RDMA communication between

two RDMA_Mongo nodes and also propose load-aware buffer registration mechanism for reasonable memory region

management of RDMA channels. 
• We redesign the oplogs synchronization protocol with RDMA primitives in RDMA_Mongo, including the optimization of

oplogs initial sync and steady state replication, in which RDMA completion event channel is used to receive messages

asynchronously. 
• We have implemented RDMA_Mongo based on MongoDB version 4.1.1-59. The detailed evaluation in RDMA-enabled net-

work demonstrates that RDMA_Mongo significantly improves the CURD performances in average insert by approximately 

30%, update by 17%, query by 15% and delete throughput by over 30%, when facing large-scale data. 

The following section, that is Section 2 , describes the typical NoSQL categories, RDMA and recent efforts on RDMA-

Enhanced Paradigm, then introduces the problem statement. Section 3 demonstrates the overview of RDMA_Mongo archi-

tecture and discusses the tradeoff among different design choices. In Section 4 , RDMA context detection algorithm and

load-aware buffer registration mechanism are proposed, and the detail of RDMA-enabled oplogs synchronization is given. In

Section 5 , we evaluate our system and compare it against the plain MongoDB. In Section 6 , we make extensive investiga-

tions of recent works related to modern network hardware, kernel-bypass networking, RDMA protocol stack optimization,

and RDMA-driven NoSQL. Section 7 comes to the conclusion of this paper and our expectation for future work. 

2. Background and motivation 

2.1. NoSQL 

NoSQL(Not Only SQL) database generally refers to the non-relational database [32] . With the increase of data scale, tradi-

tional relational database is no longer capable to cope with such large amounts of data. Therefore, NoSQL database becomes

more and more popular among developers [24] . The concept was first used in 1998 and was picked up in 2009 [11] . There

are four mainstream data models of NoSQL database: Key-value, Column-oriented, Document and Graph [11,24] . Table 1

shows the NoSQL Category and RDMA-driven paradigm in recent years. We have found that many researches focus on key-

value store and graph databases. However, there is not yet relevant researches on RDMA-driven document NoSQL system.

Therefore, we propose a first approach of MongoDB Paradigm — RDMA_Mongo. 

Key-value Data Model: A key-value database uses a key to match a value. Key-value store maintains a hash map or

dictionary which contains a set of records. Different records are identified and retrieved by different keys. Key-value store

providers fast retrieval, high scalability and concurrency. However, complex conditional queries cannot be carried out in

key-value stores such as Redis, MemcacheDB and Totyo Tyran. 

Column-oriented Data Model: In a column-oriented database, data is stored by columns. The advantages of this data

model include:1) extremely high loading speed; 2) suitable for large amounts of data; 3) efficient compression ratio; 4)

more suitable application on aggregation and data warehouse. However, it is not suitable for scanning small data, random

updates, real-time deletes and updates [1] . HBase [8] is a commonly used column-oriented database. 

Document Data Model: The structure of document database is similar to that of key-value database, but the query over

large-scale data is more efficient. Document-oriented databases store semi-structured documents and encode data in specific

formats including JSON, XML and YAML. In addition, a secondary index is supported in document-oriented NoSQLs to boost

more efficient queries. MongoDB [31] is one of the typical document databases. 
Table 1 

Researchs on RDMA-driven NoSQL databases in recent 

years. 

NoSQL Category RDMA-driven Paradigm 

Key-Value Data Model HydraDB [44] 

Nessie [4] 

InnerCache [49] 

HERD [16] 

Hybrid Memcached [14,38] 

Graph Data Model Wukong [39] 

Document Data Model RDMA_Mongo 
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Graph Data Model: Flexible graph structures are exploited by graph DB for higher scalability and faster semantic queries.

Graph databases employ nodes, edges and properties to represent and store data items. The relationships between different

data entities are abstracted as edges, which boost faster queries over heavily inter-connected data. Graph models can be

summarized into two categories: labeled-property graph and resource description framework (RDF). Typical graph databases

include Neo4J [45] and Infinite Graph. RDF query with RDMA is proposed in Wukong [39] . 

2.2. RDMA 

Emerging RDMA technology provides ultra-low latency and high throughput via zero-copy and bypassing the remote OS

kernel [19] . It writes data directly into pre-registered remote memory regions through kernel-bypass network and moves

data from local memory to remote memory without any CPU involvement. It eliminates the overhead of external memory

replication and context switching. 

Zero-copy technology allows RDMA NICs (RNIC) to transfer data directly with the registered memory regions, avoiding

data copies between user space and kernel space and between kernel space and RNIC. The application sends commands

to NIC without executing system calls. Bypassing OS kernel, RDMA requests are sent from user space to local NIC, then to

remote NIC through inter-connect kernel-bypass network, which reduces the number of context switching between kernel

memory space and user space. 

There are two fast communication types on RDMA: one-sided read/write communication and two-sided send/recv com-

munication. An one-sided RDMA can directly write from local memory to remote memory without involving OS kernel as

mentioned above, while two-sided RDMA needs the participation of CPU. Therefore, one-sided RDMA is about 2X faster

than two-sided RDMA [17] . Each link between local NIC and remote NIC will maintain a QP(Queue Pair), which contains a

send queue and receive queue. As a global data structure, one QP can push the data into local memory within 0.2us [17] .

With the increasing connections, the number of QP is also increased. Each QP maintains a CQ(Completion Queue), which is

a FIFO (First Input First Output) queue and contains all completed Work Requests (WR). Every completed WR is called as a

Completion Queue Entry (CQE) and is posted to the Work Queues (WQ). Generally, once a CQE is polled by an asynchronous

daemon, it will be removed from the CQ. 

2.3. RDMA enhanced paradigm 

Fig. 2 shows many emerging research works on exploring the power of RDMA in recent years. The prior works can

be roughly divided into two categories: RDMA-enhanced system [4,13–20,22,28,29,36,38,39,43,44,46,47,49] and RDMA-

enhanced algorithm [2,6,35,42] . 

Regarding RDMA-enhanced systems, distributed file system for big data [13,20,22,36] , key-value store [4,14–

16,28,38,43,44,49] , parallel database [19] , relational database [18,29] , graph computing [39] , RPC library [17,40] , distributed

memory transaction [17,46,47] have employed RDMA to achieve high performance. Pilaf [28] achieves high-performance key-

value store with one-sided RDMA Read, while proposing self-verifying data structures to guarantee cache consistency under

concurrent memory modifications. Octopus [22] redesigns data/metadata operations mechanisms of distributed memory file

system by closely combining RDMA and NVM. Wukong [39] is a RDMA-boosted distributed in-memory RDF graphs store

that puts forward RDMA-driven graph exploration for more efficient and lower-latency RDF queries over large-scale data.
Fig. 2. The research point of RDMA papers published in OSDI, ATC or other famous conferences in recent years. 
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Fig. 3. RDMA_Mongo Architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DrTM + H [46] presents a distributed memory transaction system which uses multiple RDMA primitives in a mixed manner

to achieve optimal performance for each transactional execution phase. 

For RDMA-enhanced algorithm, algorithms such as multi-tasks scheduling [2,6] and consensus algorithm [35,42] have

been optimized on RDMA-enabled networks. Uni-Address [2] is a RDMA-based thread management scheme with scal-

able work stealing for high-performance distributed multi-tasks scheduling. DARE [35] leverages RDMA verbs to acceler-

ate state machine replication protocol with wait-free log replication, which achieve higher request rates and lower latency

for write/read requests. APUS [42] uses RDMA primitives to replace traditional TCP/IP in Paxos protocol targeting to lower

consensus latency, which outperforms DARE [35] by 4.9X. 

2.4. Motivation 

In many data centers, big data processing platforms reply on document-based NoSQL as underlying data store and migra-

tion. However, data transmission based on traditional Ethernet under NoSQL involve excessive CPU overheads, and intoler-

able latency and throughput can’t satisfy online transaction processing. Moreover, existing RDMA-enhanced NoSQL systems 

are mainly key-value store [4,14–16,28,38,43,44,49] , column-oriented store [12] and graph-based RDF store [39] . There is still

no RDMA optimization special for document-based NoSQL. Thus, inspired from the emerging RDMA-enhanced paradigm, we

attempt to leverage RDMA primitives to accelerate data transmissions and oplogs synchronization in document-based NoSQL

cluster for higher throughput and lower delay without CPU involvement. 

3. RDMA_Mongo design 

RDMA_Mongo is a RDMA-aware design for document-based MongoDB while effectively taking advantage of RDMA design

space for MongoDB transport layer. In this section, we first demonstrate the overview of RDMA_Mongo, including system

architecture and RDMA-involved key communication between different components. Afterwards, we describe the overall 

design space for RDMA-enhanced system optimization. Finally, we discuss the tradeoff among different design choices with

the aim of higher throughput and lower latency. 

3.1. Overview 

RDMA_Mongo replaces the transport layer with RDMA verbs while keeping the original architecture unchanged. Fig. 3

shows RDMA_Mongo architecture. RDMA_Mongo involves three key components: mongos as router, mongod as config server

and shard for shaded data. Among these components, there are mainly three stages in which the data transmission load is

relatively large, including the CURD operations between client and mongos, data read/write between mongos and shard

cluster, and oplog sync among shard nodes. RDMA_Mongo employs RDMA-aware transport layer to accelerate the afore-

mentioned three critical transmission stages. 

Next, we zoom into the design space and elaborate that how they work together can gain high performance with trade-

offs among different design choices. 

3.2. RDMA-driven paradigm 

Fig. 4 shows that RDMA can work on three types of networks: Infiniband, RoCE (including two versions: v1 and v2),

and iWARP. In the user-space API layer, all paradigms are based on IB verbs API. Developers can either use some libraries
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Fig. 4. RDMA-Driven Paradigm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on IB verbs such as iSER, rsocket, MPI and SDP, or use IB Verbs API directly to develop an RDMA-driven application.

Although the libraries provide great convenience for development, the performance will be severely decreased due to the

high overhead of socket-to-Verbs translation caused by these libraries. Therefore, to achieve the best performance, we use

IB verbs API directly to develop our RDMA_Mongo without using any third-party libraries. 

3.3. Design space 

RDMA transfer progress includes RDMA device initialization, Queue Pair (QP) creation, memory registration (), QP meta-

data exchange, data send/receive/write/read and resource freeing. A QP is composed of a Send Queue (SQ) and a Receive

Queue (SQ), and is associated with a Completion Queue (CQ). Work Requests (WRs) have to be posted asynchronously into

QP for communication. Once the Work Request is serviced, a completion event will be trigged and pushed into associated

CQ. The application then polls completion events from CQ for safely reusing memory regions. The associated design space

can be mainly summarized into the following aspects. 

RDMA transport types and functions: There are two transport service types for RDMA, including Reliable Connection

(RC) and Unreliable Datagram (UD). The transport functions consist of message-oriented two-sided send/receive primitives

and shared-memory read/write primitives. In connection-oriented RC mode, end-to-end transfer between n nodes needs

Queue Pairs. In connectionless UD mode, end-to-end transfer between n nodes needs Queue Pairs only. RC service supports

one-sided and two-sided communication while UD service only supports two-sided communication. 

Message size for RDMA communication: In UD transport service, MTU is the upper limit of message size. In RC trans-

port service, the maximum message size can be 1 GiB in Infiniband NIC. A smaller message size results in more Work

Requests, which brings more CPU overhead during transfers. However, a larger message size requires more registered mem-

ory for RDMA communication, which leads to higher memory consumption. Hence, suitable message size is imperative for

RDMA transfers. 

Number of Queue Pairs per host: Determining the tailored number of Queue Pairs per host node requires a tradeoff

between task parallelism and RDMA NIC (RNIC) on-chip memory consumption. Prior work [7] has proved that too many

QPs per node can cause lower performance by up to 5x and easily overflow NIC on-chip cache in larger clusters. However,

with high concurrency, too few QPs per node causes thread contention. With Reliable Connection mode, the number of QPs

has to be equal to the number of connections and strictly limited by RNIC resource. With Unreliable Datagram mode, it is

best practice to keep the number of QPs equal to that of CPU cores. 

3.4. Design choices tradeoffs 

RDMA two-sided mode vs. one-sided mode: Different RDMA transport modes have different overheads. With no ac-

knowledgement packet, the Unreliable Datagram transport service type requires applications to handle out-of-order packets

and error, which results in more CPU involvement. As every transmitted packet requires an ACK in RDMA NIC (RNIC), the

Reliable Connection transport service type leads to high throughput with a simpler algorithm. When it comes to flow con-

trol, RDMA two-sided verbs (such as RDMA Send/Receive primitive) require applications to count transferred messages and

continuously track the number of posted Send/Receive requests between the sender and the receiver. As a result, this causes

frequent CPU context switching and multiple data copies between communication memory buffer and data memory buffer.

Meanwhile, the one-sided verbs only need to inform the sender whenever the receiver’s message buffer can be safely freed

for incoming overwriting. Hence, the paper adopts the more intuitive one-sided RDMA verbs with Reliable Connection. 

RDMA fixed vs. on-demand message size: Fixed message size for RDMA communication is hard to adapt to dynamic

system load. Considering the balance between memory consumption and current network throughput, the load-aware on-

demand message size for RDMA communication is strongly expected. 

Extending vs. remaining origin interface: Extending MongoDB transport layer interface by RDMA verbs leads to great

modification cost on upper layer invoke. Therefore, with remaining no changes on origin transport interface, RDMA_Mongo
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Fig. 5. The correlations among Algo. 1, 2, 3 and 4 employed by RDMA_Mongo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

replaces the socket implementation with RDMA one-sided Write/Read primitives, which can coexist with traditional TCP/IP

network stack. 

4. Implementation 

This section presents a detailed introduction for RDMA-based context detection, buffer registration strategy, verbs se-

lection and oplogs synchronization employed by RDMA_Mongo. RDMA context detection and load-aware buffer registration

algorithm are executed during initialization and connection establishment phase, respectively. RDMA_Mongo oplogs synchro- 

nization phase contains RDMA-enabled oplogs fetching algorithm in the secondary node and oplogs observing algorithm in

the primary node. The relationship between the aforementioned four algorithms employed by RDMA_Mongo is shown in

Fig. 5 . 

4.1. RDMA Context detection algorithm 

In RDMA-enabled transport, we should ensure that both client and server endpoints support interconnected RDMA hard-

ware. A new configuration item named is_rdma is added to RDMA-_Mongo configuration file mongod.conf , in which true indi-

cates RDMA hardware is supported and false indicates RDMA hardware is not supported. During RDMA_Mongo initialization,

mongod.conf file is loaded by local node to extract user-defined configuration items. If is_rdma item is true, local node will

query local available IB device name by ibv_get_device_list()/ ibv_get_device_name() , active device port by ibv_query_port() ,

gid (RDMA global address) index and bounded IP by show_gids command. Afterwards, one TCP channel between local and

remote nodes will be established to synchronize local is_rdma and RNIC metadata to remote node, while remote RNIC meta-

data will be returned to local node. If the values of is_rdma for local and remote nodes are all true, RDMA channel between

two sides will be established for data transfer. Otherwise TCP channel is used to transmit data. Algorithm 1 shows the

aforementioned RDMA context detection algorithm. 

4.2. Load-aware buffer registration algorithm 

For RDMA_Mongo efficient transfers, the current memory usage and network load are crucial impact factors. We demon-

strate an adaptive buffer registration algorithm for RDMA communication memory area, as shown in Algorithm 2 . A slightly

larger buffer size is desired with sufficient available memory and network while a smaller buffer size is expected with scarce

free memory and network. In this paper, the product of idle memory ratio and RNIC throughput ratio is treated as overload

factor to indicate the scarcity of resources. When this overload factor is less than a specified overload threshold overloadThr ,

we mark the load high and calculate the buffer size according to Formula 1 . Otherwise, we mark the load low and use a
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Algorithm 1 RDMA Context Detection Algorithm. 

Input: 

None 

Output: 

bool isRdmaSupport 

struct remoteRnicInfo 

1: local_support, remote_support ⇐ Null 

2: localRnicInfo, remoteRnicInfo ⇐ Null 

3: if local node rdma status is True then 

4: l ocal _ suppor t ⇐ T r ue 

5: l ocal RnicIn f o.de v _ name ⇐ local IB device name 

6: l ocal RnicIn f o.ib _ port ⇐ local IB device port

7: l ocal RnicIn f o.gid _ idx ⇐ local IB device gid index 

8: l ocal RnicIn f o.ip ⇐ local IB device bounded IP 

9: else 

10: l ocal _ support ⇐ F alse 

11: end if 

12: tcpSyncData( local_support , remote_support , localRnicIn-fo , remoteRnicInfo ) 

13: if local_support and remote_support are True then 

14: isRdmaSuppor t ⇐ T r ue 

15: return T rue 

16: else 

17: isRdmaSupport ⇐ F lase 

18: return F alse 

19: end if 

Algorithm 2 Load-Aware Buffer Registration. 

Input: 

float baseBuffer 

float overloadThr 

float k 

Output: 

float bufferSize 

1: memUsage ⇐ current memory usage in host

2: netUsage ⇐ current network throughput in host

3: calculate freeMemRate and freeNetRate 

4: loadFactor ⇐ freeMemRate * freeNetRate 

5: if loadFactor in range ( 0, overloadThr) then 

6: bufferSize ⇐ baseBuffer * loadFactor * k 

7: else 

8: bufferSize ⇐ baseBuffer 

9: end if 

 

 

 

 

 

 

 

baseline value as buffer size. We determine the baseline buffer size S based on experience [20] . Formula (1) shows the core

idea for the above algorithm, where constant k is regular factor. 

M = k × S ×
(

1 − T HR 

B 

)
×

(
1 − U 

T 

)
(1)

Where M refers to calculated memory buffer size for RDMA, regular factor k ∈ (0, 1), S is the baseline buffer size deter-

mined by oplog size RDMA_Mongo, THR is current network throughput, B is the maximum bandwidth limit of RNIC, U is

current busy memory size, and T is total DRAM size. Oplog size can be specified in RDMA_Mongo configuration file. The

actual values of k, S, B and T used in our experiment are respectively 0.7, 50MB, 100Gbps and 32GB. 

4.3. RDMA write with reliable connection 

When referring to RDMA one-sided communication primitives, the coordination mechanisms between sender and re-

ceiver endpoints are a significant challenge. We take RDMA-based CURD request/response handling between RDMA_Mongo

client and mongos component as an example. 
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Fig. 6. Coordination mechanism between Client and Mongos Component in RDMA_Mongo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The message can be divided into two categories: control & data message. Control messages with constant size (less than

4KB) are typically exchanged on small registered buffers, while data messages with highly variable size normally require

large registered memory buffer. Different requests/responses correspond to different message types. For CURD requests sent

by RDMA_Mongo client as control message, small registered MR (Message Region) on mongos component are required as

receive buffers. For Create/Update/Delete response issued by mongos component, small receive buffers on client are re-

quired. Whereas, for query responses issued by mongos component as data message, large registered receive buffers on the

client are needed and corresponding memory address/rkey(remote key) need to be contained in query request in advance.

Each side between clients and mongos contains one small pre-registered send/receive buffer for sending/receiving control

message. Considering send/receive buffer contention, RDMA_Mongo should identify when send/receive buffer are idle to be

consumed or reused, and when send/receive buffer are occupied. 

Fig. 6 shows the detailed description of RDMA-enhanced CURD request/response handling mechanism between client 

and mongos with one-sided RDMA Write in RC (Reliable Connection) service. The registered buffer is marked as idle or

busy by the coordination mechanism, which responses to the circular queues freeBuffer or busyBuffer . The entries in free-

Buffer / busyBuffer respectively correspond to idle/busy registered buffers maintained by RDMA_Mongo client/mongos com- 

ponents. Before issuing CURD requests, RDMA_Mongo client gains one idle pre-registered buffer from freeBuffer queue and

encapsulates related address/rkey into the CURD request message. The client uses RDMA Write with immediate data to write

the CURD request to remote pre-registered control message buffer on mongos. Meanwhile, when the completion event chan-

nel in mongos detects a new completed task, an event is triggered to notify mongos to poll completion queue (CQ). 

After that, mongos reads CURD request from busyBuffer , extract peer address/rkey , handles the request, frees busy receive

buffer to idle state and generates response. Then the response message is written to peer address with rkey provided by

RDMA-_Mongo client. The process of receiving responses in client is similar to that of receiving requests in mongos compo-

nent. 

4.4. RDMA-driven oplogs synchronization 

To achieve high availability and redundancy, MongoDB introduces replica set mechanism to maintain the same data set,

which contains one primary node and several secondary nodes. Rather than directly pulling data collections from the pri-

mary node, the secondary nodes fetch remote operation logs (oplog) and replay these oplogs to achieve data persistence, as

shown in Fig. 7 . The oplogs synchronization consists of two phases which are initial sync and steady state replication. Initial

sync is time-consuming full-scale synchronization while steady state replication is faster and more frequent incremental

fetch. We mainly focus on the optimization and redesign of the communication protocols in these two phases with RDMA

primitives. There are three scenarios that can trigger initial sync, including when new node has just joined, when the last

initial sync failed, and when resync command is triggered. 

Once the target sync source node is determined, the secondary node will start an OplogFetcher thread to continuously

poll the remote latest oplog timestamp T R , compare T R with local latest oplog timestamp T L . The Boolean variable _initial-

SyncFlag identifies the initial sync phase. If _initialSyncFlag is true, Oplog-Fetcher fetches the remote oplogs until consistent

point T L named minValid . If T L is less than T R , OplogFetcher fetches the remote oplogs in timestamp interval ( T L , T R ), which

means minValid is T R . Then OplogApplier thread is responsible for replaying the fetched oplogs into local durable. The primary

node periodically sends heartbeat packets to the secondary nodes to obtain the lasted applied/durable oplogs timestamp and

update local topology state. 

For offloading the above transmission task into RDMA NIC thoroughly, we leverage kernel-bypassing RDMA Write verbs

with immediate data to send messages and oplogs. Fig. 8 specifically depicts RDMA-driven oplogs synchronization. RD-
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Fig. 7. MongoDB Oplogs Sync Diagram. 

Fig. 8. RDMA-Driven Oplogs Sync in MongoDB. 

Table 2 

RDMA Message structure. 

Field Size Field Size 

type 1B rkey 4B 

name_size 2B data_type XB 

name 512 oplogs_shape XB 

step_id 8B oplogs_bytes 8B 

request_index 8B min_valid 8B 

remote_addr 8B error_status size = 4B 

/checksum proto = XB 

 

 

 

MA CQ (Completion Queue, CQ) event channel is exploited to listen on incoming RDMA message requests asynchronously.

To distinguish different request/response and be better compatible with RDMA-enabled communication, we define one Rd-

maMessage structure, as shown in Table 2 . Algorithm 3 exhibits RDMA-enabled data sync in secondary node and Algorithm 4

shows RDMA-enabled oplog observing in primary node. 
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Algorithm 3 RDMA-Enabled Secondary Oplogs Sync. 

Input: bool resync, int timeout 

resync: bool flag for restarting initial sync 

rn: remote target source node for oplogs sync 

opq: oplogs blocking queue for caching fetched oplogs 

timeout: sleep time for starting the next oplogs sync 

wc: pre-allocated work completions array used for polling 

MAX_CQ_NUM: max number of CQs 

Output: None 

1: _initialSyncFlag ⇐ bool flag for starting initial sync

2: _pause ⇐ bool flag for pause sync process 

3: _shutdown ⇐ bool flag for shut down sync process 

4: if T L is Null or resync is True then 

5: _initialSyncFlag ⇐ True 

6: end if 

7: while _shudown is False do 

8: if _pause is True then 

9: break 

10: end if 

11: T R ⇐ requestRdmaWriteRemoteOptime( rn ) 

12: if _initialSyncFlag is True then 

13: ops ⇐ requestRdmaWriteSyncOplogs( rn, T R ) 

14: else 

15: if T L < T R then 

16: ops ⇐ requestRdmaWriteSyncOplogs( rn, T L , T R ) 

17: else 

18: sleep( timeout) 

19: continue 

20: end if 

21: end if 

22: enqueueOpQueue( opq, ops ) 

23: asyncReplayOplogsFromQueue() 

24: T L ⇐ T R 
25: updateLastApplierOptime() 

26: updateLastDurableOptime() 

27: end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Evaluation 

In this section, we evaluate RDMA_Mongo’s throughput, latency and consuming time over RoCE NICs from two dimen-

sions: single-threaded performance Section 5.2 and muti-thread Section 5.3 performance. In each dimension, we evaluate

the performance among four operations: insert, delete, update and query. In Section 5.1 , we describe our experiment setup.

In Section 5.2 , we make a comparative performance analysis of RDMA_Mongo using a single thread. In Section 5.3 , we

evaluate the consuming time under multi-threaded processing. 

5.1. Experiment setup 

The performance experiment was conducted on a local cluster with three servers, inter-connected by a Mallanox SN2100

switch, as shown in Fig. 9 . Our testbed runs RoCE (RDMA over Converged Ethernet). Each server has a 32GB DRAM and

two 12-core Intel Xeon E5-2687W v4 CPU processors with 3.00 GHz of frequency. Each CPU core is equipped with a private

768KB L1 cache and a private 3072KB L2 cache. A 30MB L3 cache is shared by 10 cores on one CPU processor. Each server is

equipped with a onnectX-5 MCX516A-CDAT 100Gbps RoCE NIC via PCIe 3.0 x16 connected to one Mallanox SN2100 100Gbps

RoCE Switch. CentOS 7.4.1708 with OFED 4.5-1.0.1 stack is run on each server. RDMA_Mongo prototype is based on MongoDB

4.1.1-59-g1dd056d. 

For performance comparison between RDMA_Mongo and plain MongoDB, we concentrate on three important perfor-

mance metrics including throughput, latency and consuming time. Throu-ghput is defined as how many CURD operations per

second RDMA-_Mongo/Mongo processed, as shown in Formula (2) . Latency is defined as the average delay for each CURD

operation, as shown in Formula (3) . Consuming time indicates how long it takes to process a set of CURD operation. The
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Algorithm 4 RDMA-Enabled Oplog Observing. 

Input: 

cq: RDMA completion queue 

ec: RDMA completion event channel 

ct: RDMA context entity 

Output: None 

1: _isRun ⇐ T rue 

2: _cc ⇐ CQ context

3: _cq ⇐ extracted CQ from CQ event channel 

4: while _isRun is True do 

5: ibvGetCqEvent( ec , _cq , _cc) 

6: if cq != _cq then 

7: continue 

8: end if 

9: ibvAckCqEvents( _cq , 1) 

10: ibvReqNotifyCq( _cq ) 

11: ne ⇐ ibvPollCq( cq, MAX_CQ_NUM * 2, wc) 

12: if ne == 0 then 

13: continue 

14: end if 

15: for all WorkCompletion, wc i ∈ wc do 

16: if wc i .status is not IBV_WC_SUCCESS then 

17: continue 

18: end if 

19: if wc i .opcode is IBV_WC_RECV_RDMA_WITH_IMM then 

20: imm ⇐ wc i .imm 

21: doRecvImmCallback( imm, wc i ) 

22: if imm is OPTIME_REQUEST then 

23: T R ⇐ queryLastOptime() 

24: rdmaWriteResponse( T R ) 

25: continue 

26: else if imm is OPLOG_SYN_REQUEST then 

27: O R ⇐ queryOplogs( wc i ) 

28: rdmaWriteOplogs( O R ) 

29: end if 

30: continue 

31: else if wc i .opcode is IBV_WC_RDMA_WRITE then 

32: doRdmaWriteCallback( wc i ) 

33: end if 

34: end for 

35: end while 

Fig. 9. Network Diagram and Topology. 
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number of operation records is the independent variable in the experiment. The operation types include insert, delete, up-

date and query for each data record. To reflect large-scale data processing, each run executes CURD operations with varying

sizes of data records counts ranging from 0.1K to 10 0 0K. For comprehensize comparison, we measure the consuming time

on single-threaded and multi-threaded CURD operations. Each experimental result is the average of 20 runs. 

P = 

op 

T 
(2) 

Where P refers to throughput, op refers to operation count and T refers to total delay. 

L = 

T 

op 
(3) 

Where L refers to average latency per CURD operation, op refers to operation count and T refers to total delay. 

5.2. Evaluation with basic performance 

In this section, we evaluate the performance of RDMA-_Mongo and plain MongoDB with single-threaded CURD opera-

tions. In each run, CURD operations are executed with the increase of data records counts (0.01K–10 0 0K) to compare the

performance with RDMA_Mongo and plain MongoDB. After all performance values are collected, the relationship between

independent variables (operation and records counts) and performance metrics (throughput /latency /consuming time) are 

described in Fig. 10 . 

Based on performance results, we found that RDMA-enhanc-ed paradigm can significantly boost the CURD performance

of document-based MongoDB, with improved insert, delete, update and query performance by 30%, 30%, 17% and 15%, re-

spectively. 

5.2.1. Insert performance 

We measure the overall consuming time of inserting 0.1K, 1K, 10K, 100K, and 10 0 0K data records in one single thread,

respectively. Each operation inserts one data record. For each data records size, we measure the consuming time 20 times.

After that, we caculate the throughput and latency based on Formula (2) and (3) . 

Fig. 10 (a) shows the throughput, latency and overall consuming time for insert operations. In terms of throughput, we

can see that RDMA_Mongo has higher throughput than native MongoDB with max throughput gap of 1194 ops/s and min

throughput gap of 804 ops/s . To be specific, the average throughput of insert operation of RDMA_Mongo is 29.72% better than

native MongoDB. Meanwhile, RDMA_Mongo has significantly lower latency than Mongo with max latency gap of 0.213 ms/ops

and min latency gap of 0.067 ms/ops . When it comes to overall consuming time, RDMA_Mongo with one-sided RDMA WRITE

achieves much lower consuming time than Mongo with TCP/IP. Moreover, the consuming time of 0.1K operation records

is 21.3 ms while that of 10 0 0K operation records is 67868.7 ms . We find that the gap of overall consuming time becomes

significantly larger once the number of operation records < = 10K . This advantage is from fewer memory copies and CPU

context switches in RDMA_Mongo with one-sided RDMA WR-ITE. 

5.2.2. Delete performance 

Like the experiment setting of the insert operations, we measure the overall consuming time of deleting 0.01K, 0.1K, 1K,

10K, and 100K data records in a single thread, respectively. Each operation deletes one data record with index field. For each

data records size, we measure the consuming time 20 times. Afterwards, we caculate the throughput and latency according

to Formula (2) and (3) . 

The throughput, latency and overall consuming time for delete operations are shown by Fig. 10 (b). Compared to

plain MongoDB, RDMA_Mongo achieves higher throughput, lower latency and overall consuming time. For throughput, 

RDMA_Mongo is 37.03% ∼ 1.09x better than plain MongoDB with max throughput gap of 1276 ops/s and min throughput gap

of 702 ops/s . For latency, the max gap is 0.265ms while the min gap is 0.068ms . As one-sided RDMA WRITE is leveraged by

RDMA_Mongo with zore copy and fewer CPU involvement, with the increasing delete records, the gap of overall consuming

time is significantly larger. 

5.2.3. Update performance 

The experiment settings of update operations are like that of insert and delete operations. When updating a data record,

new data record needs to be compared to old record. If the data is inconsistent, the update operation is performed. Fig. 10 (c)

shows the comparison of throughput, latency and overall consuming time under varying size of update operation records

between RDMA_Mongo and plain MongoDB. We can see that for small update records counts ( ≤ 10 0 0) , RDMA_Mongo has

similar performance (throughput /latency /consuming time) to plain MongoDB as the comparison overhead between old and

new data records is dominate factor. However, for large-scale update records counts ( ≥ 10 0 0) , the overheads of memory copies

and CPU context switches for data transfer is dominate factor, and RDMA_Mongo achieves better throughput (10% ∼ 24.95%

higher) than plain MongoDB. 
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Fig. 10. Throughput, latency, consuming time comparison between RDMA_Mongo and Mongo with different operations. 

 

 

 

 

 

 

5.2.4. Query performance 

We measure the overall consuming time of querying 10, 100, 1K, 10K, 100K, 10 0 0K and 10 0 0 0K data records in a single

thread, respectively. Each operation queries multiple data record. For each data records size, we measure the consuming

time 20 times. After that, the throughput and latency are caculated based on Formula (2) and (3) . 

Fig. 10 (d) reveals the trends in throughput, latency and consuming time of query operation as data scale grows. We

can see that when the queried data size is small ( ≤ 10 0 0) , the performance of both MongoDB and RDMA_Mongo is similar.

However, if the amount of data queried becomes large ( > 10 0 0) , the improved performance is powerful. The larger the

amount of query data queried, the better performance is improved. Moreover, with the increasing data size, the query

performance of Mongo becomes instable, while RDMA_Mongo is more stable. 
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Fig. 11. The consuming time of RDMA_Mongo and Mongo in multi-threaded case, including the operation type of insert, update, query and delete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Evaluation with multi-threaded performance 

To verify the performance benefit of RDMA_Mongo under high concurrency and large-scale requests, multiple CURD

operations are executed simultaneously in varying number of threads ranging from 100 to 400 . Each thread represents an

established connection and executes 10 0 0 CURD operation records. Assuming that the number of threads is N , each run

starts N threads simultaneously and there are N 

∗10 0 0 operation data records. After the results of overall consuming time of

CURD operations are collected, the relationships between thread number and consuming time for different operation types

are described in Fig. 11 . 

According to performance results in Fig. 11 , we can find that the trend lines of overall consuming time for highly concur-

rent CURD operations in RDMA_Mongo are always below that of plain MongoDB. Specifically, as concurrent CURD requests

grow, RDMA_Mongo with RDMA channel always achieves lower consuming time compared to plain Mongo with TCP chan-

nel. For highly concurrent insert and query performance, the greater the number of threads, the larger the gap of overall

consuming time. When the number of threads is 400, the consuming time gap of insert and query achieves the maximum

by up to 15%. Moreover, for large-scale data request and processing, frequent memory copying and CPU context switching

are the dominate overheads. These advantages are due to the fact that RDMA channels require less memory copies and

CPU involvement by bypassing OS kernel than TCP channels, and the saved CPU can be used for resource scheduling and

allocation. By comparing the consuming time, we can conclude that the improved performance by RDMA_Mongo in multi-

threaded case is similar to that in single-threaded case. 

6. Related work 

Modern Network Hardware: There are three types of RD-MA networks: Infiniband [34] , RoCE, and iWARP [37] . Infini-

band is a network designed for RDMA, which guarantees reliable transmission from the hardware level. RoCE and iWARP

are both Ethernet-based RDMA technology and they support the corresponding verbs interface [3] . Specially, the RoCE pro-

tocol has two versions, RoCEv1 and RoCEv2 [48] . The main difference between the two versions is that RoCEv1 is based on

the RDMA protocol implemented by the Ethernet link layer, while RoCEv2 is the UDP layer implementation in the Ethernet

TCP/IP protocol. The investigation in [10,30] shows that Infiniband has better performance compared with RoCE and iWARP.

However, the network cards and switches for Infiniband are more expensive. By contrast, RoCE and iWARP have relatively

low cost due to the only requirement of dedicated NICs. With similar specification, iWARP is more expensive and complex

than RoCE [30] . Moreover, iWARP has 4X lower throughput and 3X higher latency than RoCE [30] . Therefore, RoCE enabled

network is adopted in this research. 

Kernel-Bypass Networking: Kernel-bypass networking eliminates the overhead of OS network stack and data copies 

between application buffers and OS memory buffers by moving packets processing up to userspace or offloading network

stack into dedicated NIC. The mainstream technologies of kernel-bypass networking include DPDK [23] and RDMA. TCP/IP
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network stack is moved up to userspace in DPDK. Userspace I/O (UIO) is exploited by DPDK to map NIC device memory into

userspace. Huge-pages is leveraged by DPDK to reduce TLB cache miss. Meanwhile, instead of interrupting the CPU, DPDK

uses polling to access the packets in the NIC. However, userspace network stack in DPDK still involves CPU intervention.

The concurrency of DPDK depends heavily on the number of CPU cores. DPDK causes unnecessary CPU idling in low-load

scenarios. For RDMA, network stack is offloaded into RNIC devices without any CPU involvement. High bandwidth and

zero-copy mechanism in RDMA promise high throughput and ultra-low latency. The rate of receiving packets in RDMA is

completely determined by the forwarding capability of RNICs. So the prototype in this paper is executed in RDMA-enabled

network. 

RDMA Protocol Stack Optimization: Some research works [9,21,30] focus on the protocol optimization over RDMA re-

cently. Unlike previous end-to-end single-path transport for RDMA, MP-RDMA in [21] presents a multi-path RDMA trans-

port, which takes full advantage of the rich transmission paths in datacenters. IRN in [30] proposes a more efficient loss

recovery and end-to-end flow control bounded with the number of in-flight packets, which eliminates the requirement of

Priority Flow Control (PFC) and outperforms RoCE with PFC. The research in [9] demonstrates a unified design of unreli-

able send/recv and RDMA Write over connectionless datagrams, which achieves higher performance and scalability than

connection-oriented RDMA transports. The above researches mainly involve the underlying mechanism of RDMA, but lack

attention to resource management for RDMA-enabled transactions. RDM-A_Mongo proposes a novel load-aware buffer reg-

istration algorithm for efficient memory management. Note that RoCE with PFC is required by RDMA_Mongo. 

RDMA-Driven NoSQL Database: Due to stronger demand for the stores and analysis of massive semi-structured/un-

structured data, NoSQL databases are expected to provide higher throughput, lower latency and CPU overhead. RDMA-driven

NoSQL databases, especially key-value [4,7,14–16,28,38,43,44,49] and graph stores [39] , are becoming prevalent in datacen-

ters. 

Pilaf in [28] leverages one-sided RDMA Read to process get requests with optimal CPU overhead and proposes self-

verifying data structures to eliminate read-write races between clients and server. In FaRM [7] , the memory in the cluster is

exposed as a transparently shared address space. Lock-free reads over RDMA, function shipping and collocating objects are

supported by FaRM to achieve more efficient transactions for key-value store or other applications. HydraDB [44] demon-

strates a novel RDMA-based key-value middleware for general purpose and boosts high-performance in-memory key-value

store from multiple aspects including RDMA Write enabled message passing, RDMA Read enabled GET operations, remote

pointer sharing and a lightweight consistency mechanisms. Moreover, multicore systems are leveraged efficiently by Hy-

draDB to fully take the potential of RDMA. Unlike RDMA Read-enabled key-value systems like FaRM [7] and Pilaf [28] , HERD

[16] uses a mix of one-sided RDMA Write and two-sided Send/Recv verbs to execute GET/PUT operations, which reduces

network round trips and achieves 2X higher throughput than prior FaRM and Pilaf. In Wukong [39] , a distributed RDMA-

enabled RDF graph stores is proposed to achieve lower latency, higher throughput and concurrency for RDF queries over

large RDF datasets. Specifically, RDMA Read is used for small RDF queries while RDMA Write is used for large non-selective

queries. However, to the best of our knowledge, there is still no attempt to accelerate document-based NoSQL systems with

RDMA. So we focus on one-sided RDMA-enhanced document NoSQL databases with the aims of high throughput, low la-

tency and CPU overhead. 

Recently, kernel-bypass networking is an emerging field to accommodate the need of data intensive computing. Despite

of some research achievements, a number of open issues and challenges in RDMA-driven system design and optimization

are expected to be tackled. The research in this paper revolves around RDMA-driven optimization of document-based NoSQL

database. 

7. Conclusion 

Inspired from RDMA-enhanced paradigm, we propose the first RDMA-enabled document-based NoSQL paradigm named

RDMA_Mongo. It can efficiently exploit the feature of OS kernel-bypassing and zero copy in PFC-enabled RDMA network

to mitigate the traditional network transmission challenges: frequent CPU involvement and long waiting time for MongoDB

client with high concurrency. In this paper, we particularly analyzed the MongoDB network transport layer. Further, we

demonstrated a rich design space and the tradeoff among three design choices. RDMA_Mongo employs a novel RDMA con-

text detection algorithm and load-aware buffer registration algorithm to coexist with traditional network stack and register

RDMA communication area in a load-ware manner. To accelerate the oplogs synchronization between the primary and sec-

ondary node, RDMA write with immediate data is leveraged to send ACK, control message or oplogs while RDMA completion

event channel is used to receive messages or oplogs asynchronously. By taking the CURD requests between MongoDB client

and mongos as an example, RDMA_Mongo implements a coordination mechanism using more efficient one-sided RDMA

Read/Write primitives with Reliable Connection service. Experiment results on both baseline operations and high concur-

rent number of connections show that the performance of RDMA_Mongo has been greatly improved. Looking ahead, we

are committed to making it possible for MongoDB in RDMA enabled network, with better RDMA based sharding strategies,

transaction mechanisms and NVMM (Non-Volatile Main Memory) based storage. 
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